Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 19-26, 2017.
Article in English | WPRIM | ID: wpr-728261

ABSTRACT

We investigated whether betulin affects the gene expression, secretion and proteolytic activity of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as in vivo production of MMP-3 in the rat knee joint to evaluate the potential chondroprotective effect of betulin. Rabbit articular chondrocytes were cultured and reverse transcription-polymerase chain reaction (RT-PCR) was used to measure interleukin-1β (IL-1β)-induced gene expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), ADAMTS-5 and type II collagen. Effect of betulin on IL-1β-induced secretion and proteolytic activity of MMP-3 was investigated using western blot analysis and casein zymography, respectively. Effect of betulin on MMP-3 protein production was also examined in vivo. The results were as follows: (1) betulin inhibited the gene expression of MMP-3, MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5, but increased the gene expression of type II collagen; (2) betulin inhibited the secretion and proteolytic activity of MMP-3; (3) betulin suppressed the production of MMP-3 protein in vivo. These results suggest that betulin can regulate the gene expression, secretion, and proteolytic activity of MMP-3, by directly acting on articular chondrocytes.


Subject(s)
Animals , Rats , Blotting, Western , Caseins , Chondrocytes , Collagen Type II , Gene Expression , Knee Joint , Knee , Osteoarthritis , Thrombospondins
3.
Biomolecules & Therapeutics ; : 163-170, 2016.
Article in English | WPRIM | ID: wpr-177274

ABSTRACT

We examined whether apigenin affects the gene expression, secretion and activity of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as in vivo production of MMP-3 in the knee joint of rat to evaluate the potential chondroprotective effects of apigenin. Rabbit articular chondrocytes were cultured in a monolayer, and reverse transcription - polymerase chain reaction (RT-PCR) was used to measure interleukin-1β (IL-1β)-induced expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), and ADAMTS-5. In rabbit articular chondrocytes, the effects of apigenin on IL-1β-induced secretion and proteolytic activity of MMP-3 were investigated using western blot analysis and casein zymography, respectively. The effect of apigenin on MMP-3 protein production was also examined in vivo. In rabbit articular chondrocytes, apigenin inhibited the gene expression of MMP-3, MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5. Furthermore, apigenin inhibited the secretion and proteolytic activity of MMP-3 in vitro, and inhibited production of MMP-3 protein in vivo. These results suggest that apigenin can regulate the gene expression, secretion, and activity of MMP-3, by directly acting on articular chondrocytes.


Subject(s)
Animals , Rats , Apigenin , Blotting, Western , Caseins , Chondrocytes , Gene Expression , Knee Joint , Knee , Osteoarthritis , Polymerase Chain Reaction , Reverse Transcription , Thrombospondins
4.
Biomolecules & Therapeutics ; : 442-448, 2015.
Article in English | WPRIM | ID: wpr-86474

ABSTRACT

We evaluated the chondroprotective effects of wogonin by investigating its effects on the gene expression and production of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as on production of MMP-3 in the rat knee. Rabbit articular chondrocytes were cultured in a monolayer, and RT-PCR was used to measure interleukin-1beta (IL-1beta)-induced expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), and type II collagen. In rabbit articular chondrocytes, the effects of wogonin on IL-1beta-induced production and proteolytic activity of MMP-3 were investigated using western blot analysis and casein zymography, respectively. The effect of wogonin on MMP-3 protein production was also examined in vivo. In rabbit articular chondrocytes, wogonin inhibited the expression of MMP-3, MMP-1, MMP-13, and ADAMTS-4, but increased expression of type II collagen. Furthermore, wogonin inhibited the production and proteolytic activity of MMP-3 in vitro, and inhibited production of MMP-3 protein in vivo. These results suggest that wogonin can regulate the gene expression and production of MMP-3, by directly acting on articular chondrocytes.


Subject(s)
Animals , Rats , Blotting, Western , Caseins , Chondrocytes , Collagen Type II , Gene Expression , Interleukin-1beta , Knee , Models, Theoretical , Osteoarthritis , Thrombospondins
5.
Yonsei Medical Journal ; : 1584-1591, 2014.
Article in English | WPRIM | ID: wpr-221603

ABSTRACT

PURPOSE: The object of this study was to evaluate entrance angle effects on femoral tunnel length and cartilage damage during anteromedial portal drilling using three-dimensional computer simulation. MATERIALS AND METHODS: Data was obtained from an anatomic study performed using 16 cadaveric knees. The anterior cruciate ligament femoral insertion was dissected and the knees were scanned by computer tomography. Tunnels with different of three-dimensional entrance angles were identified using a computer simulation. The effects of different entrance angles on the femoral tunnel length and medial femoral cartilage damage were evaluated. Specifically, tunnel length and distance from the medial femoral condyle to a virtual cylinder of the femoral tunnel were measured. RESULTS: In tunnels drilled at a coronal angle of 45degrees, an axial angle of 45degrees, and a sagittal angle of 45degrees, the mean femoral tunnel length was 39.5+/-3.7 mm and the distance between the virtual cylinder of the femoral tunnel and the medial femoral condyle was 9.4+/-2.6 mm. The tunnel length at a coronal angle of 30degrees, an axial angle of 60degrees, and a sagittal angle of 45degrees, was 34.0+/-2.9 mm and the distance between the virtual cylinder of the tunnel and the medial femoral condyle was 0.7+/-1.3 mm, which was significantly shorter than the standard angle (p<0.001). CONCLUSION: Extremely low and high entrance angles in both of axial plane and coronal plane produced inappropriate tunnel angles, lengths and higher incidence of cartilage damage. We recommend that angles in proximity to standard angles be chosen during femoral tunnel drilling through the anteromedial portal.


Subject(s)
Aged , Female , Humans , Male , Middle Aged , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament Reconstruction/instrumentation , Cadaver , Computer Simulation , Femur/anatomy & histology , Imaging, Three-Dimensional , Knee Joint/diagnostic imaging , Osteotomy/methods , Outcome and Process Assessment, Health Care , Patient Positioning , Surgical Instruments , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL